Tangent circles in the ratio 2:1

Hiroshi Okumura and Masayuki Watanabe

In this article we consider the following old Japanese geometry problem (see Figure 1), whose statement in [1, p. 39] is missing the condition that two of the vertices are the opposite ends of a diameter. (The authors implicitly correct the omission in the proof they provide on page 118.) We denote by $O(r)$ the circle with centre O, radius r.
Problem [1, Example 3.2]. The squares $\boldsymbol{A C} \boldsymbol{B}^{\prime} \boldsymbol{D}^{\prime}$ and $\boldsymbol{A B} \boldsymbol{C}^{\prime} \boldsymbol{D}$ have a common vertex A, and the vertices C and B^{\prime}, C^{\prime} and B lie on the circle $O(R)$ whose diameter is $B^{\prime} C^{\prime}, A$ lying within the circle. The circle $O_{1}\left(r_{1}\right)$ touches $A B$ and $A C$ and also internally touches $O(R)$, and $O_{2}\left(r_{2}\right)$ is the incircle of triangle $A B C$. Show that

$$
\begin{equation*}
r_{1}=2 r_{2} . \tag{1}
\end{equation*}
$$

Figure 1.

Figure 2.

We shall see that $B^{\prime} C^{\prime}$, being a diameter, is merely a sufficient condition. Figure 2 shows that some additional property involving B^{\prime} and C^{\prime} is required for deducing (1). In Theorem 1 we give a simple condition that implies (1).

Theorem 1. For any triangle $A B C$, if \boldsymbol{A}^{\prime} is the reflection in $B C$ of a point \boldsymbol{A}, then the radius of one of the circles internally touching the circumcircle of $\boldsymbol{A}^{\prime} \boldsymbol{B C}$ and also touching $\boldsymbol{A B}$ and $\boldsymbol{A C}$ is twice the size of the radius of the incircle of $A B C$.

Proof. Let $\boldsymbol{A} \boldsymbol{A}^{\prime}$ intersect $\boldsymbol{B C}$ at \boldsymbol{P} and the circumcircle γ (say) of $\boldsymbol{A}^{\prime} \boldsymbol{B} \boldsymbol{C}$ again at D, and let Q be the foot of the perpendicular from C to $\boldsymbol{B} \boldsymbol{A}^{\prime}$ (see Figure 3). Then $\angle \boldsymbol{B} \boldsymbol{A}^{\prime} \boldsymbol{D}=\angle \boldsymbol{Q C B}$ since the right triangles $\boldsymbol{B} \boldsymbol{A}^{\prime} \boldsymbol{P}$ and $\boldsymbol{B C Q}$ share a common angle $\angle \boldsymbol{A}^{\prime} B C$. Moreover $\angle \boldsymbol{B} \boldsymbol{A}^{\prime} D=\angle B C D$. Hence, $\angle \boldsymbol{Q C B}=\angle \boldsymbol{B C D}$. This implies that \boldsymbol{H} and D are symmetric in $B C$, where \boldsymbol{H} is the orthocentre of $\boldsymbol{A}^{\prime} \boldsymbol{B C}$. Thus, \boldsymbol{D} is the orthocentre of $\boldsymbol{A B C}$, and therefore, $D B C$ and $A B C$ share a common nine-point circle β (say), and β touches the incircle α (say) of $A B C$ internally by Feuerbach's Theorem. Therefore, the dilatation of magnification 2 with centre \boldsymbol{A} carries $\boldsymbol{\beta}$ into the circumcircle of $D B C$, which is γ, and α into one of the circles touching $A B$, $A C$ and γ internally. This implies that the last circle is twice the size of α, and the proof is complete.

We mentioned "one of the circles" in the theorem, but if we introduce orientations of lines and circles, the circle is determined uniquely. Let us assume that γ and $A B C$ have counter-clockwise orientations. Then the circle of twice the size of α (illustrated by a dotted line in Figure 3) is the one which touches $\gamma, \overrightarrow{A B}$ and $\overrightarrow{C A}$ so that the orientations at the points of tangency are the same (see the arrows in Figure 3), and the point of tangency of the circle with γ is the reflection of \boldsymbol{A} in the point of tangency of α and β.

Figure 3.

The following two properties follow immediately (see Figures 4 and 5). They can be found without a proof in [1, p. 29].

Corollary 1. If $A B C$ is a right triangle with right angle at A, then the circle touching the circumcircle of $A B C$ internally and also touching $A B$ and $A C$ is twice the size of the incircle of $A B C$.

Corollary 2. If $\boldsymbol{C} \boldsymbol{B}^{\prime} \boldsymbol{A}$ is an isosceles triangle with $\boldsymbol{C} \boldsymbol{B}^{\prime}=\boldsymbol{C A}$, and \boldsymbol{B} is a point lying on the line $\boldsymbol{B}^{\prime} \boldsymbol{A}$, then one of the circles touching the circumcircle of $\boldsymbol{B C} \boldsymbol{B}^{\prime}$ internally and also touching $\boldsymbol{A} \boldsymbol{B}$ and $\boldsymbol{A C}$ is twice the size of the incircle of $\boldsymbol{A B C}$.

Figure 4.

Figure 5.

The last corollary holds since the reflection in $B C$ of \boldsymbol{A} lies on the circumcircle of $\boldsymbol{B C} \boldsymbol{B}^{\prime}$. Though Figure 5 illustrates only the case where \boldsymbol{A} lies on the segment $\boldsymbol{B} \boldsymbol{B}^{\prime}$, and this is the case stated in [1], the corollary does not need this condition (see Figure 6b).

Conversely, for a triangle $\boldsymbol{A} \boldsymbol{B} \boldsymbol{C}$, let \boldsymbol{A}^{\prime} be the reflection in $B C$ of \boldsymbol{A}, and let \boldsymbol{B}^{\prime} be the intersection of the line $\boldsymbol{A} \boldsymbol{B}$ and the circumcircle of $\boldsymbol{A}^{\prime} \boldsymbol{B C}$. Then $\boldsymbol{C A}=\boldsymbol{C} \boldsymbol{B}^{\prime}$ holds. Hence, with the two sides $\boldsymbol{A} \boldsymbol{B}$ and $\boldsymbol{A C}$ and their intersections with the circumcircle, we can construct two similar isosceles triangles (see Figures 6 a and 6 b, where the ratio of the two smaller circles is $2: 1$). \boldsymbol{A} lies within the circumcircle if and only if $\angle \boldsymbol{C A B}>\mathbf{9 0}^{\circ}$, and Figure 1 can be obtained by letting $\angle C A B=135^{\circ}$.

Figure 6 a.

Figure 6b.

The following property with a proof using trigonometric functions can be found in [2, p. 75] (see Figure 7).

Corollary 3. If $\boldsymbol{A C} \boldsymbol{B}^{\prime} \boldsymbol{D E}$ and $\boldsymbol{A B C} \boldsymbol{C}^{\prime} \boldsymbol{D}^{\prime} \boldsymbol{E}$ are two regular pentagons sharing the side $\boldsymbol{A} \boldsymbol{E}$, then the circle internally touching the circumscribed circle of $\boldsymbol{C} \boldsymbol{B}^{\prime} \boldsymbol{C}^{\prime} \boldsymbol{B}$ and the sides $\boldsymbol{A B}$ and $\boldsymbol{A C}$ is twice the size of the incircle of $\boldsymbol{D E} \boldsymbol{D}^{\prime}$.

The corollary can be generalized yet further (see Figure 8).
Theorem 2. If $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \cdots, \boldsymbol{A}_{2 n+1}$ are vertices of a regular ($2 \boldsymbol{n}+\mathbf{1}$)-gon lying in this order, and $\boldsymbol{B}_{\boldsymbol{i}}$ is the reflection of $\boldsymbol{A}_{\boldsymbol{i}}$ in the line $\boldsymbol{A}_{1} \boldsymbol{A}_{2 n+1}$, and γ is the circle passing through $\boldsymbol{A}_{\boldsymbol{n}}, \boldsymbol{A}_{n+1}, \boldsymbol{B}_{n+1}, \boldsymbol{B}_{n}$, then one of the circles touching the lines $\boldsymbol{A}_{1} \boldsymbol{A}_{2}, \boldsymbol{B}_{1} \boldsymbol{B}_{2}$ and γ internally is twice the size of the incircle of the triangle made by the lines $\boldsymbol{A}_{2 n} \boldsymbol{A}_{2 n+1}, \boldsymbol{B}_{2 n} \boldsymbol{B}_{2 n+1}$ and $A_{2 n+1-[n / 2]} B_{2 n+1-[n / 2]}$, where $[x]$ is the largest integer which does not exceed x.

Proof. $\boldsymbol{A}_{2 n+1}$ is the centre of γ, and the reflection of $\boldsymbol{A}_{2 n+1-[n / 2]}$ in the line through the centres of the two regular polygons is $\boldsymbol{A}_{1+[n / 2]}$. Let us produce $A_{2 n+1} A_{1}$ to \boldsymbol{P}, where P lies on γ and A_{1} lies on the segment $A_{2 n+1} P$, and let Q be the intersection of $\boldsymbol{A}_{1} P$ and $\boldsymbol{A}_{1+[n / 2]} \boldsymbol{B}_{1+[n / 2]}$. By simple calculation we have

$$
A_{2 n+1} P=2 r \cos \frac{\pi}{2(2 n+1)}, \quad A_{2 n+1} A_{1}=2 r \sin \frac{\pi}{2 n+1},
$$

where \boldsymbol{r} is the circumradius of $\boldsymbol{A}_{1} \boldsymbol{A}_{2} \cdots \boldsymbol{A}_{2 n+1}$. Now let us suppose that \boldsymbol{n} is odd; then $[n / 2]=(n-1) / 2$ and we have

$$
\begin{aligned}
A_{1} Q & =r \sin \left(\frac{2 \pi}{2 n+1} \cdot \frac{n-1}{2}+\frac{\pi}{2 n+1}\right)-\frac{A_{2 n+1} A_{1}}{2} \\
& =r\left(\sin \frac{n}{2 n+1} \pi-\sin \frac{1}{2 n+1} \pi\right), \\
A_{2 n+1} Q & =A_{2 n+1} A_{1}+A_{1} Q \\
& =r\left(\sin \frac{n}{2 n+1} \pi+\sin \frac{1}{2 n+1} \pi\right),
\end{aligned}
$$

$$
\begin{aligned}
A_{1} Q+A_{2 n+1} Q & =2 r \sin \frac{n}{2 n+1} \pi=2 r \sin \left(\frac{1}{2} \pi-\frac{1}{2(2 n+1)} \pi\right) \\
& =2 r \cos \frac{1}{2(2 n+1)} \pi
\end{aligned}
$$

Therefore, we get $\boldsymbol{A}_{1} \boldsymbol{Q}+\boldsymbol{A}_{2 n+1} \boldsymbol{Q}=\boldsymbol{A}_{2 n+1} \boldsymbol{P}$, and this implies that \boldsymbol{Q} is the mid-point of $\boldsymbol{A}_{\mathbf{1}} \boldsymbol{P}$. Similarly, we can prove the same fact in the case of n being even. Thus, the ratio of the two similar isosceles triangles made by the lines $\boldsymbol{A}_{1} \boldsymbol{A}_{2}, \boldsymbol{B}_{1} \boldsymbol{B}_{2}, \boldsymbol{A}_{1+[n / 2]} \boldsymbol{B}_{1+[n / 2]}$, and $\boldsymbol{A}_{1} \boldsymbol{A}_{2}, \boldsymbol{B}_{1} \boldsymbol{B}_{2}$, the tangent of γ at P, is $1: 2$ and the theorem is proved.

Figure 9 (when \boldsymbol{n} is odd).
The authors would like to thank the referee for suggesting helpful comments.

References

1. H. Fukagawa and D. Pedoe, Japanese Temple Geometry Problems, Charles Babbage Research Centre Canada, 1989.
2. H. Fukagawa and D. Sokolowsky, Japanese mathematics - how many problems can you solve? Volume 2, Morikita Shuppan, Tokyo, 1994 (in Japanese).
