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Tangent circles in the ratio 2 : 1

Hiroshi Okumura and Masayuki Watanabe

In this article we consider the following old Japanese geometry problem
(see Figure 1), whose statement in [1, p. 39] is missing the condition that two
of the vertices are the opposite ends of a diameter. (The authors implicitly
correct the omission in the proof they provide on page 118.) We denote by
O(r) the circle with centre O, radius ».

Problem [1, Example 3.2]. The squares ACB’D’ and ABC’D have a com-
mon vertex A, and the vertices C and B’, C’ and B lie on the circle O(R)
whose diameter is B’C’, A lying within the circle. The circle O4(r1) touches
AB and AC and also internally touches O(R), and Oz(r2) is the incircle of
triangle ABC. Show that

r1, = 27‘2. (1)

Figure 1. Figure 2.

We shall see that B’C’, being a diameter, is merely a sufficient condition.
Figure 2 shows that some additional property involving B’ and C” is required
for deducing (1). In Theorem 1 we give a simple condition that implies (1).

Theorem 1. For any triangle ABC, if A’ is the reflection in BC of a point
A, then the radius of one of the circles internally touching the circumcircle
of A’BC and also touching AB and AC is twice the size of the radius of the
incircle of ABC'.
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Proof. let AA’ intersect BC at P and the circumcircle ~ (say) of A’BC
again at D, and let @ be the foot of the perpendicular from C to BA’ (see
Figure 3). Then ZBA’'D = ZQC B since the right triangles BA’P and BCQ
share a common angle ZA’BC. Moreover /ZBA'D = /BCD. Hence,
/QCB = Z/BCD. This implies that H and D are symmetric in BC, where
H is the orthocentre of A’BC. Thus, D is the orthocentre of ABC, and
therefore, DBC and ABC share a common nine-point circle 8 (say), and
3 touches the incircle « (say) of ABC internally by Feuerbach’s Theorem.
Therefore, the dilatation of magnification 2 with centre A carries 3 into the
circumcircle of DBC, which is v, and « into one of the circles touching AB,
AC and ~ internally. This implies that the last circle is twice the size of «,
and the proof is complete.

We mentioned “one of the circles” in the theorem, but if we introduce
orientations of lines and circles, the circle is determined uniquely. Let us
assume that v and A BC have counter-clockwise orientations. Then the circle
of twice the size of « (illustrated by a dotted line in Figure 3) is the one which

— —
touches v, AB and C A so that the orientations at the points of tangency are
the same (see the arrows in Figure 3), and the point of tangency of the circle
with ~ is the reflection of A in the point of tangency of « and 3.

Figure 3.

The following two properties follow immediately (see Figures 4 and 5).
They can be found without a proof in [1, p. 29].
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Corollary 1. If ABC is a right triangle with right angle at A, then the circle
touching the circumcircle of ABC internally and also touching AB and AC
is twice the size of the incircle of ABC.

Corollary 2. If CB’A is an isosceles triangle with CB’ = CA, and B is a
point lying on the line B’ A, then one of the circles touching the circumcircle
of BC B’ internally and also touching AB and AC is twice the size of the
incircle of ABC'.

Figure 4. Figure 5.

The last corollary holds since the reflection in BC of A lies on the circumcircle
of BCB’. Though Figure 5 illustrates only the case where A lies on the
segment BB’, and this is the case stated in [1], the corollary does not need
this condition (see Figure 6b).

Conversely, for atriangle ABC, let A’ be the reflection in BC of A, and
let B’ be the intersection of the line AB and the circumcircle of A’BC. Then
C A = CB’holds. Hence, with the two sides AB and AC and their intersec-
tions with the circumcircle, we can construct two similar isosceles triangles
(see Figures 6a and 6b, where the ratio of the two smaller circles is 2 : 1).
A lies within the circumcircle if and only if ZCAB > 90°, and Figure 1 can
be obtained by letting ZCAB = 135°.

BI

Figure 6a. Figure 6b.
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The following property with a proof using trigonometric functions can
be found in [2, p. 75] (see Figure 7).

Corollary 3. If ACB’DE and ABC'D’E are two regular pentagons sharing
the side AE, then the circle internally touching the circumscribed circle of
C B’C’B and the sides AB and AC is twice the size of the incircle of DED’.

Adnt1—[n/2]

Figure 7. Figure §.

The corollary can be generalized yet further (see Figure 8).

Theorem 2. If A4, Az, -+, Az,41 are vertices of a regular (2n 4+ 1)-gon
lying in this order, and B; is the reflection of A; in the line A; 43,41, and
~ is the circle passing through A,,, A, 41, Bn+1, Bn, then one of the cir-
cles touching the lines A;A;, ByB, and ~ internally is twice the size of
the incircle of the triangle made by the lines AzpA2p41, BanBan+1 and
Aznt1-[n/21B2n+1—[n/2], Where [z] is the largest integer which does not ex-
ceed x.

Proof. Azny1 isthe centre of 4, and the reflection of Az, 41_[n/2] in the line
through the centres of the two regular polygons is Ay [,/2]. Let us produce
Azn+1A1 to P, where P lies on v and A, lies on the segment A3, 1P, and
let @ be the intersection of A; P and Ay, /21B14[n/2]- By simple calculation
we have

Aznt1P = 27 cos Azpnt1A1 = 2rsin

2(2n+1)° 2n+1'

where r is the circumradius of A; A3+ Azp+1. Now let us suppose that n
is odd; then [n/2] = (n — 1)/2 and we have

. 27 n—1 o Azpnyp14y
A1Q = 1'51n( . + ) —
2n+1 2 2n+1 2
. n . 1
= r(51n 7 — sin 7\'),
2n+1 2n+1
Azn41Q = Azpp141 4+ A1Q

7 + sin

= 'r'(sin ﬂ'),
2n+1 2n+1
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n 1 1
A Aaxp = 2rsln ——7 = 2rsin (—ﬂ'— 771')
10+ A2nt10 2n + 1 2" 2(2n+1)
1
= 2rcos ———7.
2(2n + 1)

Therefore, we get A1Q 4+ Azp+1Q = Azn41 P, and this implies that Q is
the mid-point of A, P. Similarly, we can prove the same fact in the case of
n being even. Thus, the ratio of the two similar isosceles triangles made by
the lines A1A5, B1B,, A1+[n/2]B1+[n/2]y and A1A5, B1B5, the tangent of
~ at P, is 1 : 2 and the theorem is proved.

Figure 9 (when n is odd).

The authors would like to thank the referee for suggesting helpful
comments.
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